
IJSRSET1848148 | Received : 15 June 2018 | Accepted : 26 June 2018 | May-June-2018 [(4) 8 : 640-645]

© 2018 IJSRSET | Volume 4 | Issue 8 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section : Engineering and Technology

640

An Efficient Algorithm for Real-Time Object Detection in Images
Md. Samiul Islam, Samia Sultana

Stamford University Bangladesh, Dhaka, Bangladesh

ABSTRACT

In this paper we have proposed an algorithm for object detection in various situations. Nowadays object

detection and recognition has entered in every sphere of life in one or the other form. Applications of object

detection are video surveillance, anti-theft system using cameras, face-recognition, biometric verification etc.

Research are going on how to improve the performance in term of space and time complexity, how to deal with

adverse conditions like improper lightning conditions, scene clutter, occlusion etc. and to reduce false positive

rate etc. In this paper we have explained how to deal with the any situation while acquiring the images so that

it can be used for better scene interpretation. Results have been generated using flash of light and dark region

present in the image as some of the adverse situations. Here we have trained the system to detect the object

using our algorithm. The algorithm is simple and very useful as it reduces the false positive rate as compared to

contemporary algorithms and increases the efficiency of applications like video surveillance and scene

interpretation etc.

Keywords: Object Detection, Image Classification, Image Recognition, Histogram of Oriented Gradients,

Support Vector Machine.

I. INTRODUCTION

An image recognition algorithm takes an image (or a

patch of an image) as input and outputs what the

image contains. In other words, the output is a class

label (e.g. “cat”, “dog”, “table” etc.). How does an

image recognition algorithm know the contents of an

image? Well, we have to train the algorithm to learn

the differences between different classes. If we want

to find cats in images, we need to train an image

recognition algorithm with thousands of images of

cats and thousands of images of backgrounds that do

not contain cats. Needless to say, this algorithm can

only understand objects / classes it has learned.

To simplify things, we will focus only on two-class

(binary) classifiers. One may think that this is a very

limiting assumption, but many popular object

detectors (e.g. face detector and pedestrian detector)

have a binary classifier under the hood. E.g. inside a

face detector is an image classifier that says whether a

patch of an image is a face or background.

The following diagram illustrates the steps involved

in a traditional image classifier.

Figure 1: Object (cat) detection using traditional

image processing

Interestingly, many traditional computer vision image

classification algorithms follow this pipeline, while

https://www.learnopencv.com/tag/image-classification/
https://www.learnopencv.com/tag/image-recognition/
https://www.learnopencv.com/tag/histogram-of-oriented-gradients/
https://www.learnopencv.com/tag/support-vector-machine/
https://www.learnopencv.com/wp-content/uploads/2016/11/image-classification-pipeline.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/image-classification-pipeline.jpg

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Md. Samiul Islam et al. Int J S Res Sci. Engg. Tech. 2018 May-June;4(8) : 640-645

 641

Deep Learning based algorithms bypass the feature

extraction step completely.

II. METHODS AND MATERIAL

A. Preprocessing

Often an input image is pre-processed to normalize

contrast and brightness effects. A very common

preprocessing step is to subtract the mean of image

intensities and divide by the standard deviation.

Sometimes, gamma correction produces slightly

better results. While dealing with color images, a

color space transformation (e.g. RGB to LAB color

space) may help get better results.

We evaluated several input pixel representations

including grayscale, RGB and LAB color spaces

optionally with power law (gamma) equalization.

These normalizations have only a modest effect on

performance, perhaps because the subsequent

descriptor normalization achieves similar results. We

do use colour information when available. RGB and

LAB colour spaces give comparable results, but

restricting to grayscale reduces performance by 1.5%

at 10−4 FPPW. Square root gamma compression of

each colour channel improves performance at low

FPPW (by 1% at 10−4 FPPW) but log compression is

too strong and worsens it by 2% at 10−4 FPPW.”

As part of pre-processing, an input image or patch of

an image is also cropped and resized to a fixed size.

This is essential because the next step, feature

extraction, is performed on a fixed sized image.

B. Feature Extraction

The input image has too much extra information that

is not necessary for classification. Therefore, the first

step in image classification is to simplify the image by

extracting the important information contained in the

image and leaving out the rest. For example, if we

want to find shirt and coat buttons in images, we will

notice a significant variation in RGB pixel values.

However, by running an edge detector on an image

we can simplify the image. We can still easily discern

the circular shape of the buttons in these edge images

and so we can conclude that edge detection retains

the essential information while throwing away non-

essential information. The step is called feature

extraction. In traditional computer vision approaches

designing these features are crucial to the

performance of the algorithm. Turns out we can do

much better than simple edge detection and find

features that are much more reliable. In our example

of shirt and coat buttons, a good feature detector will

not only capture the circular shape of the buttons but

also information about how buttons are different from

other circular objects like car tires.

Some well-known features used in computer vision

are Haar-likefeatures introduced by Viola and

Jones, Histogram of Oriented Gradients (HOG),

Scale-Invariant Feature Transform (SIFT), Speeded

Up Robust Feature (SURF) etc.

As a concrete example, please look at feature

extraction using Histogram of Oriented Gradients (

HOG).

Histogram of Oriented Gradients (HOG)

A feature extraction algorithm converts an image of

fixed size to a feature vector of fixed size. In the case

of pedestrian detection, the HOG feature descriptor is

calculated for a 64×128 patch of an image and it

returns a vector of size 3780. Notice that the original

dimension of this image patch was 64 x 128 x 3 =

24,576 which is reduced to 3780 by the HOG

descriptor.

HOG is based on the idea that local object appearance

can be effectively described by the distribution(

histogram) of edge directions (oriented gradients).

The steps for calculating the HOG descriptor for a

64×128 image are listed below.

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Md. Samiul Islam et al. Int J S Res Sci. Engg. Tech. 2018 May-June;4(8) : 640-645

 642

Step 1: Gradient calculation: Calculate the x and the y

gradient images, and , from the original image.

This can be done by filtering the original image with

the following kernels.

Using the gradient images and , we can calculate

the magnitude and orientation of the gradient using

the following equations.

The calcuated gradients are unsigned and

therefore is in the range 0 to 180 degrees.

Step 2: Cells: Divide the image into 8×8 cells.

Step 3: Calculate histogram of gradients in these 8×8

cells: At each pixel in an 8×8 cell we know the

gradient (magnitude and direction), and therefore we

have 64 magnitudes and 64 directions—i.e. 128

numbers. Histogram of these gradients will provide a

more useful and compact representation. We will

next convert these 128 numbers into a 9-bin

histogram (i.e. 9 numbers). The bins of the histogram

correspond to gradients directions 0, 20, 40 … 160

degrees. Every pixel votes for either one or two bins

in the histogram. If the direction of the gradient at a

pixel is exactly 0, 20, 40 … or 160 degrees, a vote

equal to the magnitude of the gradient is cast by the

pixel into the bin. A pixel where the direction of the

gradient is not exactly 0, 20, 40 … 160 degrees splits

its vote among the two nearest bins based on the

distance from the bin. E.g. A pixel where the

magnitude of the gradient is 2 and the angle is 20

degrees will vote for the second bin with value 2. On

the other hand, a pixel with gradient 2 and angle 30

will vote 1 for both the second bin (corresponding to

angle 20) and the third bin (corresponding to angle

40).

Step 4: Block normalization : The histogram

calculated in the previous step is not very robust to

lighting changes. Multiplying image intensities by a

constant factor scales the histogram bin values as well.

To counter these effects we can normalize the

histogram — i.e. think of the histogram as a vector of

9 elements and divide each element by the magnitude

of this vector. In the original HOG paper, this

normalization is not done over the 8×8 cell that

produced the histogram, but over 16×16 blocks. The

idea is the same, but now instead of a 9 element

vector we have a 36 element vector.

Step 5: Feature Vector: In the previous steps we

figured out how to calculate histogram over an 8×8

cell and then normalize it over a 16×16 block. To

calculate the final feature vector for the entire image,

the 16×16 block is moved in steps of 8 (i.e. 50%

overlap with the previous block) and the 36 numbers

(corresponding to 4 histograms in a 16×16 block)

calculated at each step are concatenated to produce

the final feature vector. What is the length of the

final vector?

The input image is 64×128 pixels in size, and we are

moving 8 pixels at a time. Therefore, we can make 7

steps in the horizontal direction and 15 steps in the

vertical direction which adds up to 7 x 15 = 105 steps.

At each step we calculated 36 numbers, which makes

the length of the final vector 105 x 36 = 3780.

C. Learning Algorithm for Classification

In the previous section, we learned how to convert an

image to a feature vector. In this section, we will

learn how a classification algorithm takes this feature

vector as input and outputs a class label (e.g. cat or

background).

https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Md. Samiul Islam et al. Int J S Res Sci. Engg. Tech. 2018 May-June;4(8) : 640-645

 643

Before a classification algorithm can do its magic, we

need to train it by showing thousands of examples of

cats and backgrounds. Different learning algorithms

learn differently, but the general principle is that

learning algorithms treat feature vectors as points in

higher dimensional space, and try to find planes /

surfaces that partition the higher dimensional space in

such a way that all examples belonging to the same

class are on one side of the plane / surface.

To simplify things, let us look at one learning

algorithm called Support Vector Machines (SVM) in

some detail.

Support Vector Machine (SVM) is one of the most

popular supervised binary classification algorithm.

Although the ideas used in SVM have been around

since 1963, the current version was proposed in 1995

by Cortes and Vapnik.

In the previous step, we learned that the HOG

descriptor of an image is a feature vector of length

3780. We can think of this vector as a point in a 3780-

dimensional space. Visualizing higher dimensional

space is impossible, so let us simplify things a bit and

imagine the feature vector was just two dimensional.

 Figure 2: Classifying image points using SVM

In our simplified world, we now have 2D points

representing the two classes (e.g. cats and

background). In the image above, the two classes are

represented by two different kinds of dots. All black

dots belong to one class and the white dots belong to

the other class. During training, we provide the

algorithm with many examples from the two classes.

In other words, we tell the algorithm the coordinates

of the 2D dots and also whether the dot is black or

white.

Different learning algorithms figure out how to

separate these two classes in different ways. Linear

SVM tries to find the best line that separates the two

classes. In the figure above, H1, H2, and H3 are three

lines in this 2D space. H1 does not separate the two

classes and is therefore not a good classifier. H2 and

H3 both separate the two classes, but intuitively it

feels like H3 is a better classifier than H2 because H3

appears to separate the two classes more cleanly.

Why? Because H2 is too close to some of the black

and white dots. On the other hand, H3 is chosen such

that it is at a maximum distance from members of the

two classes.

Given the 2D features in the above figure, SVM will

find the line H3 for us. If we get a new 2D feature

vector corresponding to an image the algorithm has

never seen before, we can simply test which side of

the line the point lies and assign it the appropriate

class label. If our feature vectors are in 3D, SVM will

find the appropriate plane that maximally separates

the two classes. If our feature vector is in a 3780-

dimensional space, SVM will find the

appropriate hyperplane.

Optimizing SVM

So far so good, but we have one important

unanswered question. What if the features belonging

to the two classes are not separable using a

hyperplane? In such cases, SVM still finds the best

hyperplane by solving an optimization problem that

tries to increase the distance of the hyperplane from

the two classes while trying to make sure many

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Md. Samiul Islam et al. Int J S Res Sci. Engg. Tech. 2018 May-June;4(8) : 640-645

 644

training examples are classified properly. This tradeoff

is controlled by a parameter called C. When the value

of C is small, a large margin hyperplane is chosen at

the expense of a greater number of misclassifications.

Conversely, when C is large, a smaller margin

hyperplane is chosen that tries to classify many more

examples correctly.

III. RESULTS AND DISCUSSION

The results of our proposed algorithm are shown in

Figure 3 and Figure 4.

It can be seen from the Figure 3 and Figure 4 that the

proposed algorithm can accurately detect objects such

as humans and car. In addition, the moving car is also

difficult to detect in the detection task. But the

moving car can be detected by the proposed

algorithm. In summary, the proposed algorithm can

achieve better results of these samples and locate the

objects reasonably.

Figure 3: Human detection using pretrained SVM

with HOG features.

Figure 4: Moving cars detection using SVM classifier

IV. CONCLUSION

On the basis of summarizing the limitations of the

existing algorithm for the object detection, this paper

presents object detection based on deep learning of

small samples. The proposed algorithm contains

modules as: preprocessing, feature extraction and

support vector machine, which can realize object

detection of a scene. Experimental results show the

proposed method is significantly better than the

existing techniques in terms of both subjective and

objective. In the future work, we will combine object

detection with attitude estimation to make the object

detector better used in the service robotics.

V. REFERENCES

[1]. Rahesh Mohan & Rakamant Nevatia

(1992). "Perceptual organization for scene

segmentation and description" (PDF). IEEE

Trans Pat Anal Mach Intell.

[2]. M. J. Swain and D. H. Ballard "Colour

indexing", International Journal of Computer

Vision, 7:1, 11-32, 1991.

[3]. B. Schiele and J. L. Crowley "Recognition

without correspondence using

multidimensional receptive field histograms",

International Journal of Computer Vision, 36:1,

31-50, 2000

[4]. O. Linde and T. Lindeberg "Object recognition

using composed receptive field histograms of

higher dimensionality", Proc. International

Conference on Pattern Recognition (ICPR'04),

Cambridge, U.K. II:1-6, 2004.

https://www.learnopencv.com/wp-content/uploads/2016/11/SVM.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/SVM.jpg
http://iris.usc.edu/outlines/papers/1992/pami-mohan-92.pdf
http://iris.usc.edu/outlines/papers/1992/pami-mohan-92.pdf
http://www.springerlink.com/content/n231l41541p12l1g/
http://www.springerlink.com/content/n231l41541p12l1g/
http://www.springerlink.com/content/n231l41541p12l1g/
http://www.springerlink.com/content/q0272k83h1tg5675/
http://www.springerlink.com/content/q0272k83h1tg5675/
http://www.springerlink.com/content/q0272k83h1tg5675/
http://www.springerlink.com/content/q0272k83h1tg5675/
http://www.springerlink.com/content/q0272k83h1tg5675/
ftp://ftp1.nada.kth.se/pub/documents/CVAP/reports/LinLin04-ICPR.pdf
ftp://ftp1.nada.kth.se/pub/documents/CVAP/reports/LinLin04-ICPR.pdf
ftp://ftp1.nada.kth.se/pub/documents/CVAP/reports/LinLin04-ICPR.pdf
ftp://ftp1.nada.kth.se/pub/documents/CVAP/reports/LinLin04-ICPR.pdf
ftp://ftp1.nada.kth.se/pub/documents/CVAP/reports/LinLin04-ICPR.pdf

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Md. Samiul Islam et al. Int J S Res Sci. Engg. Tech. 2018 May-June;4(8) : 640-645

 645

[5]. O. Linde and T. Lindeberg "Composed

complex-cue histograms: An investigation of

the information content in receptive field based

image descriptors for object recognition",

Computer Vision and Image Understanding,

116:4, 538-560, 2012.

[6]. Lowe, D. G., "Distinctive image features from

scale-invariant keypoints", International Journal

of Computer Vision, 60, 2, pp. 91-110, 2004.

[7]. Lindeberg, Tony (2012). "Scale invariant feature

transform". Scholarpedia. 7 (5):10491. doi:10.42

49/scholarpedia.10491

http://www.csc.kth.se/~tony/abstracts/LinLin11-CompComplCueHist.html
http://www.csc.kth.se/~tony/abstracts/LinLin11-CompComplCueHist.html
http://www.csc.kth.se/~tony/abstracts/LinLin11-CompComplCueHist.html
http://www.csc.kth.se/~tony/abstracts/LinLin11-CompComplCueHist.html
http://www.csc.kth.se/~tony/abstracts/LinLin11-CompComplCueHist.html
http://www.csc.kth.se/~tony/abstracts/LinLin11-CompComplCueHist.html
http://citeseer.ist.psu.edu/lowe04distinctive.html
http://citeseer.ist.psu.edu/lowe04distinctive.html
http://citeseer.ist.psu.edu/lowe04distinctive.html
http://www.scholarpedia.org/article/Scale_Invariant_Feature_Transform
http://www.scholarpedia.org/article/Scale_Invariant_Feature_Transform
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.4249%2Fscholarpedia.10491
https://doi.org/10.4249%2Fscholarpedia.10491

